

Input and fate of dissolved nitrogen compounds via submarine groundwater discharge into the Puck Bay (Poland)

Sabine Nestler

Diploma Thesis

Supervisor: Dr. habil. Maren Voß

07 April 2011

AMBER Annual Meeting 2011

Input of terrstrial nutrients into the coastal ocean

Nutrient input via

submarine groundwater discharge (SGD)

- volume of water discharged as SGD may be small relative to surface discharge
- increased concentration of dissolved solids compared to rain or river water
 → may be of great local importance
- ecological impact on:
 - productivity and biomass
 - species composition and distribution (Lapointe 1997)
- anthropogenic increases in groundwater nutrient concentrations
 → eutrophication (Johannes 1980)
- groundwater residence times can range from years to decades (Hu et al. 2006)

SGD on Hel Peninsula

- Dominant N species in groundwater mostly nitrate (Smith et al. 2006)
- Samples from Hel peninsula during autumn 2009: very high ammonium concentrations (up to 5 mmol L⁻¹) nitrate nonexistend or only in very low conentrations (max. 2 µmol L⁻¹) high amounts of H₂S → no oxygen

Diploma thesis

- Characterization of the spacial and seaonal N input via SGD into the Puck Bay
- Fate of dissolved N from submarine groundwater
 - Mixing and/or assimilation of ammonium ($\delta^{15}N$ signatures)
 - Tracking nitrogen from groundwater into the foodweb
- Determination of the source of ammonium

Seasonal variability

Leibniz-Institut für Ostseeforschung

WARNEMÜNDE

Samples from fixed lances

- increasing NH₄⁺ concentration with decreasing salinity
- highest NH₄⁺ concentration during November 2009
- Iowest NH₄⁺ concentration during May 2010

- similar δ^{15} N values within the autumn samples, in spite of different NH₄⁺ concentrations → Conservative mixing
- higher δ^{15} N values during May 2010

 \rightarrow rainwater usually low $\delta^{15}N$ values \rightarrow no likely source

Groundwater source

- low δ^{15} N values \rightarrow degradation of terrestrial material leaf litter δ^{15} N: -8 to 3‰ (Peterson & Fry, 1987)
- 170m deep well: → similar δ^{15} N values, but low NH₄⁺ concentration
- 2-3m deep well: → δ^{15} N values around 10 ‰ and low NH₄⁺ concentration
- → The sampled wells are not the source of the SGD

- samples from fixed lances and "off shore" samples show similar $\delta^{15}N$ values and conservative mixing of NH_4^+
- "near shore" samples show higher δ¹⁵N values more similar to water column and Baltic Sea porewater samples
 → different source?
- \rightarrow high spatial variability

- high spatial variability in salinity, NH_4^+ concentration and $\delta^{15}N$ values within the sediment
- mainly conservative mixing of NH₄⁺ from groundwater into the water column
 - ightarrow no processes like nitrification in the sediment
- no certain evidence for seasonality within the groundwater
 → samples during May 2010 may also show spatial variability
- low δ¹⁵N values in NH₄⁺ from groundwater indicate degradation of terrestrial material
- \rightarrow no evidence for anthropogenic influence

Thank you!

